ASME 2021 International Mechanical Engineering Congress and Exposition Track 14: Reliability and Safety in Industrial Automation Systems

Towards a New Generation of Probabilistic Safety Assessment Models and Tools.

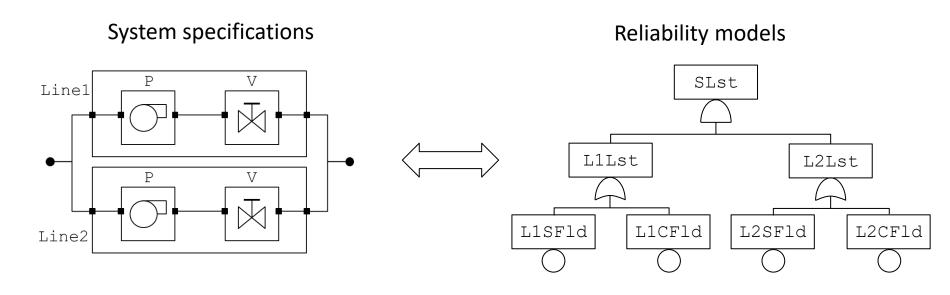
Prof. Antoine B. Rauzy

Department of Mechanical and Industrial Engineering Norwegian University of Science and Technology Trondheim, Norway

lacksquare Norwegian University of Science and Technology

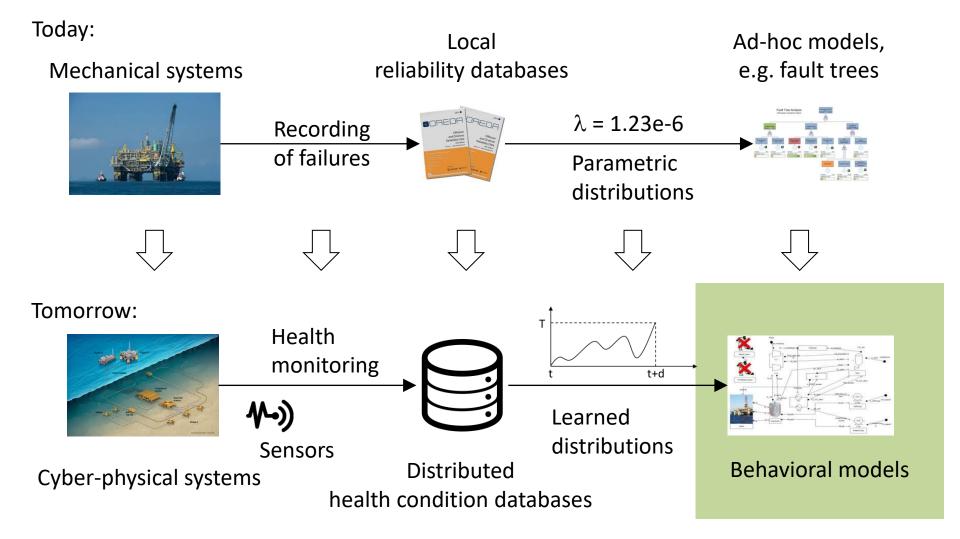
One Observation, Two Questions

The observation:


Software and control mechanisms become ubiquitous in nowadays technical systems.

The two questions:

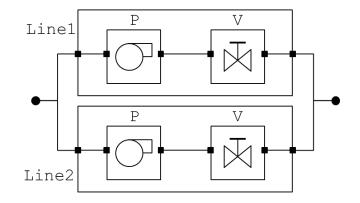
- 1. Are current modeling technologies for probabilistic risk/safety analysis, e.g. fault trees, still suitable to assess risks in new generations of systems?
- 2. Can we use the new capacities provided by information technologies to improve the probabilistic risk/safety analysis process?


- (R)evolution in Reliability Engineering
- The S2ML+X Family of Languages
- The Dialectic of Expressive Power and Computational Complexity
- Model Synchronization
- Wrap-Up

Issues with Current Probabilistic Safety Analyses

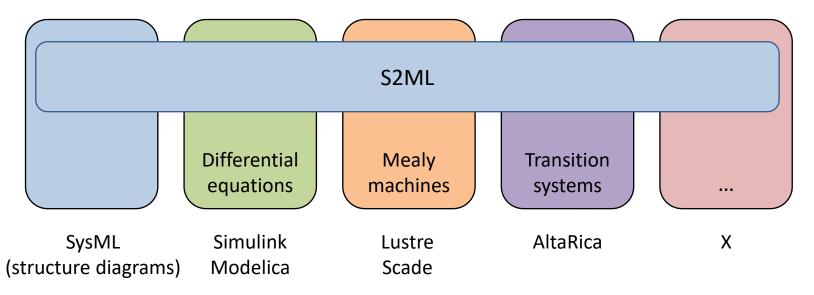
- Combinatorial models (fault trees, reliability block diagrams, event trees) lack of expressive power to represent faithfully reconfigurations, control mechanisms, time dependencies...;
- States/events models (Markov chains, stochastic Petri nets) lack of structure;
- All are very distant from system specifications, making model hard to author, to share with stakeholders and to maintain through the life-cycle of systems.

(R)evolution in Reliability Engineering



- (R)evolution in Reliability Engineering
- The S2ML+X Family of Languages
- The Computational Complexity Challenge
- Model Synchronization
- Wrap-Up

Characteristics of Behavioral Models


Behavior + Architecture = Model

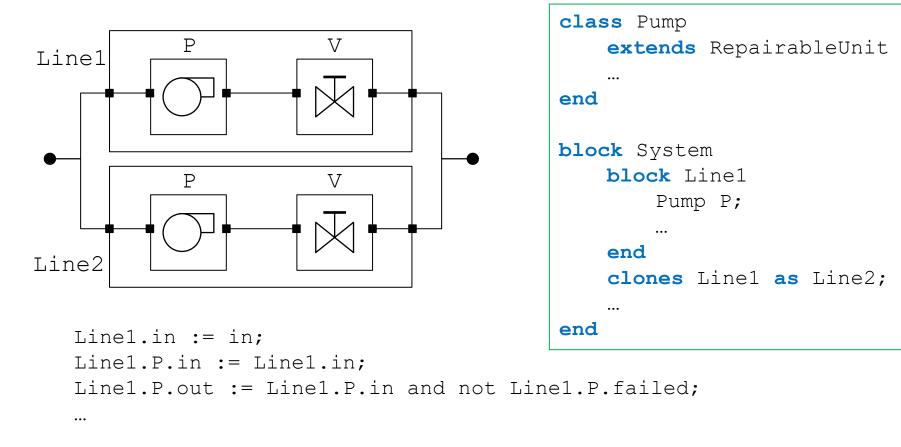
- Any modeling language is the combination of a mathematical framework to describe the behavior and a structuring paradigm to organize the model.
- The choice of the suitable mathematical framework depends on which aspect of the system we want to study
- Structuring paradigms are to a very large extent independent of the chosen mathematical framework.

The S2ML+X Promise

S2ML (System Structure Modeling Language): a coherent and versatile set of **structuring constructs** for any behavioral modeling language.

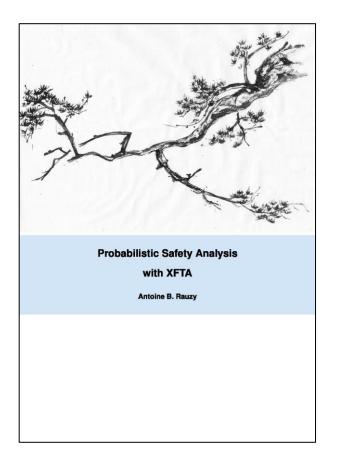
- The structure of models reflects the structure of the system, even though to a limited extent.
- **Structuring** helps to design, to debug, to share, to maintain and to align heterogeneous models.

Models as Scripts


The model "as designed" is a script to build the model "as assessed".

```
domain WF {WORKING, FAILED} WORKING<FAILED;
operator Series arg1 arg2 =
    return if state1==WORKING and state2==WORKING then WORKING else FAILED;
class Component
    WF state(init = WORKING);
    WF in, out(reset = WORKING)
    probability state FAILED = (exponentialDistribution lambda (missionTime));
    parameter Real lambda = 1.0e-3;
    assertion
        out := Series(in, state);
end
```

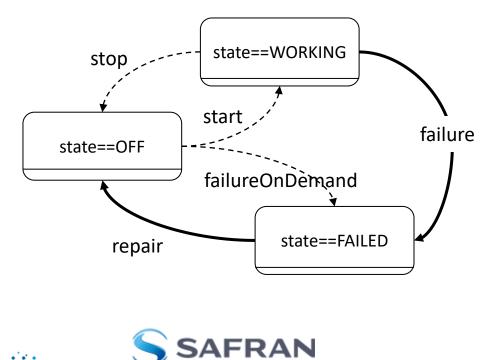
Complex models can be built using **libraries** of **reusable modeling components** and **modeling patterns**.


S2ML + Stochastic Boolean Equations

Enhancing classical **reliability models** (fault trees, reliability block diagrams) with the **expressive power of object-orientation** at **no algorithmic cost**

NTNU Norwegian University of Science and Technology

XFTA 2 + XFTA Book


XFTA 2:

- Calculation engine for fault trees and related models.
- Input language: S2ML+SBE
- State of the art assessment algorithms: as of today most efficient calculation engine
- Calculation of all usual risk indicators:
 - Top event probability
 - Importance factors
 - Sensitivity analyses
 - Approximation of system reliability
 - Safety integrity levels
- Free of use, including for commercial purposes.

AltaRica 3.0 (S2ML + Guarded Transitions Systems)

Guarded Transitions Systems:

- Are a probabilistic Discrete Events System formalism.
- Are a compositional formalism.
- Generalize existing mathematical framework.
- Take the best advantage of existing assessment algorithms.

OpenAltaRica

- (R)evolution in Reliability Engineering
- The S2ML+X Family of Languages
- The Dialectic of Expressive Power and Computational Complexity
- Model Synchronization
- Wrap-Up

Classes of Modeling Languages

 Combinatorial Formalisms Fault Trees Event Trees Reliability Block Diagrams Finite Degradation Structures 	 States Automata Markov chains Dynamic Fault Trees Stochastic Petri Nets 	 Process Algebras Agent-based models Process algebras Python/Java/C++
	Expressive power	
States	States + transitions	Deformable systems
Complexity of assessments		
#P-hard but reasonable polynomial approximation	PSPACE-hard	Undecidable

Difficulty to design, to validate and to maintain models

Best in Class Modeling Languages

Combinatorial Formalisms

Boolean models:

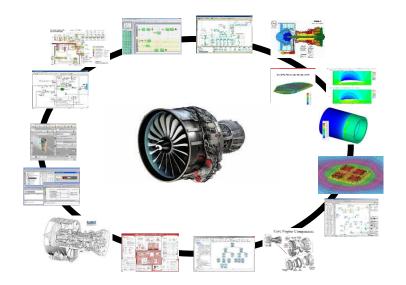
- Stochastic Boolean Equations
- S2ML+SBE
- XFTA

Multistate systems:

- Finite degradation structures
- S2ML+FDS
- Emmy (proof of concept)

States Automata

- Guarded Transition Systems
- S2ML+GTS = AltaRica 3.0
- AltaRica Wizard

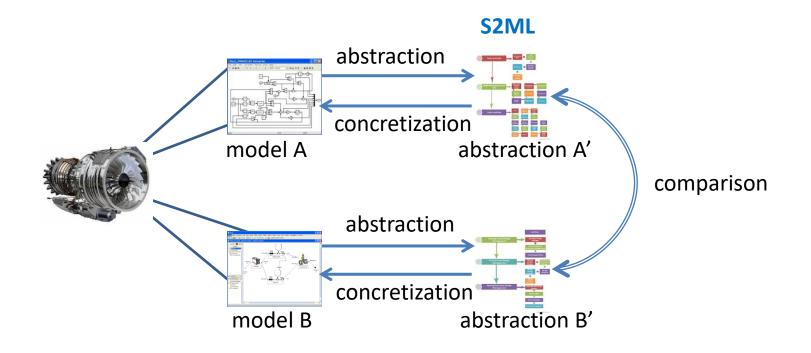

Process Algebras

- Stochastic Process Algebras
- S2ML+SPA = Systema
- Systema Simulator (proof of concept)

- (R)evolution in Reliability Engineering
- The S2ML+X Family of Languages
- The Dialectic of Expressive Power and Computational Complexity
- Model Synchronization
- Wrap-Up

Model Diversity

Models are designed by different teams in different languages at different levels of abstraction, for different purposes, making different approximations. They have also different maturities.


 $complexity \rightarrow simplexity$

The diversity of models is irreducible.

Model Synchronization

Abstraction + Comparison = Synchronization

How to agree on disagreements?

- Introduction
- The S2ML+X Family of Languages
- The Dialectic of Expressive Power and Computational Complexity
- Model Synchronization
- Wrap-Up

Wrap-Up & Conclusion

- "Traditional" modeling approaches in reliability engineering are **no longer sufficient**:
 - Because the **systems** we are dealing with are **more complex**.
 - Because new information technologies open new opportunities.
 - Because reliability models should be integrated with models from other engineering disciplines.
- Huge benefits can be expected from a full-scale deployment of model-based systems engineering. However, this requires:
 - To set up solid scientific foundations for models engineering.
 - To bring to maturity some key technologies.
- The biggest challenge is to train new generation of engineers:
 - With skills and competences in **discrete mathematics** and **computer science**, and
 - With skills and competences in system thinking, and
 - With skills and competences in **specific application domains**.